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ABSTRACT: Ultrasound is the most commonly used imaging modality in clinical practice because it is a 

nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial 

intelligence (AI)–powered ultrasound is becoming more mature and getting closer to routine clinical 

applications in recent times because of an increased need for efficient and objective acquisition and evaluation 

of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent 

variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. 

With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics 

processing unit computing power to identify abstract and complex imaging features. This has given rise to 

tremendous opportunities such as providing robust and generalizable AI models for improving image 

acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing 

ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions 

in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL 

techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow. 

Key Words: Artificial intelligence in ultrasound, deep learning in ultrasound, thyroid nodule, breast lesion, 

liver lesion 

 

I. INTRODUCTION 
Artificial intelligence (AI)–powered ultrasound is becoming more mature and coming closer to routine 

clinical applications in recent years because of an increased need for efficient and objective acquisition and 

evaluation of ultrasound images. Because ultrasound is an operator-dependent imaging modality, it is important 

to develop deep-learning (DL) models that assess image quality and provide feedback to sonographers; 

providing guidance during data acquisition and measurement makes ultrasound more intelligent and less 

operator dependent. 

In this review, we intend to give an overview of the advances in AI-powered ultrasound that create 

opportu-nities to objectively evaluate ultrasound data, improve clinical workflow, and reduce health care costs. 

We also provide a brief background on DL and ultrasound imaging to give a comprehensive insight into the 

field. Afterward, we present currently available DL applications in ultrasound, discuss challenges, and present 

our outlook on future directions in AI-powered ultrasound. 

 

DL 

DL is a subset of machine learning (ML) and AI that extracts a complex hierarchy of features from 

images by its self-learning ability, as opposed to the handcrafted feature extraction in classical ML algorithms 

[1]. DL involves neural networks with many layers that extract a hierarchy of features from raw input images. 

The rapid increase in the processing power of graphics processing units has enabled the development of state-of-

the-art DL algorithms that can be trained with millions of images and are robust to variations in images. DL has 

become popular because of recent successes especially in image segmentation and classification ap-plications. 

Compared with DL, classical ML approaches that are hand designed in decomposable pipelines are more 

interpretable because each component has an explanation, but they are usually not very accurate or robust. By 

using DL models we sacrifice interpretability for robust and complex imaging features with greater 

generalization ability. 

Several types of DL approaches have been developed for different purposes, such as object detection 

and segmentation in images, speech recognition, genotype and phenotype detection, and classification of 
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diseases. Some of the popular DL algorithms are stacked autoen-coders [2], deep Boltzmann machines, deep-

belief neural networks [3], and convolutional neural networks (CNNs) [4]. CNNs are the algorithms most 

commonly applied to images. Since their first introduction in 1989 [5], CNNs have been widely applied to 

classification and segmentation of photographic images with great success [4,6,7]. 

DL techniques achieve impressive results and robustness by training on large amounts of data. They are 

also gaining popularity in many areas of medical image analysis [8], such as tissue and lesion segmentation [1,9-

13], lesion diagnosis [1,14-18], and histopathologic analysis [19,20]. CNN architectures are increasingly 

complex, with some systems having more than 100 layers, which means millions of weights and billions of 

connections among neurons. A typical CNN architecture contains multiple convolution, max-pooling, and 

activation layers. Convolutional layers pro-duce feature maps by convolving a convolutional kernel across the 

input image. Max-pooling is used to down-sample the output of convolutional layers by passing the maximum 

value of a defined neighborhood to the next layer. Rectified linear unit is one of the most commonly used 

activation functions. It nonlinearly transforms data by clipping any negative input values to zero, while positive 

input values are passed as output [21]. To perform a prediction from input data, the output scores of final CNN 

layer are connected to a softmax nonlinearity function that normalizes scores into multinomial distribution over 

labels. Also, an optimizer that minimizes the error between prediction and ground-truth labels through a loss 

function and a gradient backpropagation method that updates weights at each iteration are used to train CNN 

architectures until they converge to steady state (see Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. A schematic illustration of a deep-learning training process for a classification task. White arrows show 

operations between layers. CNN ¼ convolutional neural network; SGD ¼ stochastic gradient descent. 

 

Ultrasound Imaging 

Diagnostic ultrasonography is an ultrasound-based im-aging technique used for visualizing and 

diagnosing pathological changes of internal organs such as liver, heart, and vessels and superficial structures 

such as thyroid, breast, and muscles. Ultrasound has several advantages compared with other medical imaging 

tech-niques. It is safe because it does not use harmful ionizing radiation, like radiography and CT, it is 

considerably lower in cost, it is portable for point-of-care applications, and it provides real-time imaging. 

Because it is portable, it can be transported to a patient’s bedside and is useful for patient screening and follow-

up. The disadvantages of ultrasound include its strong operator dependence and inability to examine areas of the 

body containing gas and bones. The most common types of ultrasound images are shown in Figure 2. 

 

II. METHODS 
We performed a thorough analysis of the literature using the Google Scholar and PubMed search engines. We 

included 31 peer-reviewed journal publications and conference proceedings in this field (Medical Image 

Analysis, IEEE Transactions on Medical Imaging, IEEE Journal of Biomedical and Health Informatics, Medical 

Physics, Ultrasonics, and conference proceedings from SPIE, the Medical Image Computing and Computer 

Assisted Intervention Society, the Institute of Electrical and Electronics Engineers, and others) that describe the 

application of DL to ultrasound before January 15, 2019 (see Fig. 3 for the identification and selection 

procedure). We divided reports into four groups on the basis of the frequency of studies in the literature, namely, 

studies on thyroid, breast, liver, and other areas. 
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Fig 2. Examples of ultrasound images. (A) B-mode image of a thyroid nodule. (B) Color flow Doppler image of 

a thyroid nodule overlaid on B-mode image. (C) Shear-wave elastographic map overlaid on B-mode image of a 

liver with stage F3 fibrosis. (D) Contrast-enhanced ultrasound image of a carotid artery with stenosis. 

 

Training, Validation, and Evaluation 

In DL, data are divided into training, validation, and test sets to learn from examples, establish the 

soundness of learning results, and evaluate the generalizability of a developed algorithm on unseen data, 

respectively. When there are limited data, cross-validation methods (eg, k-fold) are preferred. Training is 

typically done with a supervised approach, which requires ground truth for the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Flowchart for identification, screening, eligibility, and inclusion of studies. 
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task. Most DL applications involve supervised learning, in which a DL model is trained on a data set of images 

with provided ground-truth labels or segmentation maps. Ground truth is usually obtained with manual 

delineations of lesions or structures by experts for segmentation tasks. 

The optimal way to compare the performance of DL models presented in each application is to evaluate 

them on data sets that are publicly available with well-accepted ground truth. However, this is a big challenge in 

this field. We have presented the performance of each DL model on the reported validation and test data sets for 

each application in the ―Results‖ section. 

 

AI-Powered Detection, Segmentation, and Diagnosis in Ultrasound 

Computer-aided diagnosis (CAD) has become one of the major research subjects in diagnostic 

radiology. CAD provides a second opinion to assist radiologists in image interpretation by improving the 

accuracy and consistency of radiologic diagnosis and also by reducing image reading time. Many ultrasound 

CAD systems that are mainly for breast, thyroid, and liver disease detection andclassification have been 

proposed in the past 2 decades. The majority of these CAD systems are based on classical ML using texture 

features that include several processing steps: preprocessing, feature extraction and selection, and classification. 

Even though these studies show the promise of ultrasound CAD, they include several limi-tations: subjective 

selection of a region of interest that includes pathology, using limited training and test data sets, and having data 

that are collected only from a single ultrasound device at a single medical center. These lim-itations make it 

difficult to integrate ML algorithms on the basis of textures into clinical workflow to assist radiologists. In 

recent years, researchers have proposed DL-based ultrasound CAD systems following the success of DL in 

image classification and segmentation tasks [15,22]. Knowledge gained from one data set could be easily 

transferred to a new data set obtained from another center with another ultrasound device by fine-tuning the DL 

model on a new data set, which is called transfer learning. 

 

Thyroid Nodule Detection and Classification 

Thyroid nodules are extremely common lesions and are found in 50% of the adult population on the 

basis of autopsy studies [23-26]. The only nonsurgical test that is proven to differentiate a benign from a 

malignant nodule is fine-needle aspiration biopsy. Because the majority of thyroid nodules selected for fine-

needle aspiration (w90%) are benign [27,28], a noninvasive and reliable method is necessary to identify nodules 

that do not require biopsy or surgery. This will significantly reduce health care costs and patient anxiety. To be 

acceptable, sensitivity at or near 100% is needed to make sure cancers are not missed with a reasonable 

specificity so that a good fraction of benign lesions is not biopsied. 

 

Ma et al [29] presented a method based on the fusion of two customized CNN models that includes 7 7, 5 5, and 

3 3 convolutional kernels to classify benign and malignant nodules. It was validated on 15,000 images collected 

from two local hospitals. In another study, Ma et al [30] presented a cascaded CNN model that includes two 

consecutive CNN models with 15 and 4 convolutional layers. It automatically detects nodules from ultrasound 

B-mode images in two steps. They evaluated their model with 10-fold cross-validation. Li et al [31] used Faster 

R-CNN [32] (which achieved best performance on the The PASCAL Visual Object Classes data set) to 

automatically detect papillary carcinoma and benign regions of nodules from ultrasound B-mode images. Li et 

al [33] presented a retrospective and multicohort study with a large population from three hospitals (332,180 

images from 45,644 patients in total). They used Resnet50 [34] and Darknet [35] CNN models pretrained on the 

ImageNet dataset. Akkus et al 

[16] presented a CNN model [36] using an attention map to predict nodules from ultrasound B-mode images. 

Choi et al [22] used a proprietary CAD system (S-Detect for Thyroid; Samsung Medison, Seoul, South Korea) 

to classify 102 nodules from 89 patients as benign or malignant. Pereira et al [37] compared DL approaches for 

thyroid nodule characterization from shear wave elastographic (SWE) images. Chi et al [17] fine-tuned a 

GoogleNet [36] model to classify thyroid nodules and tested it on a data set of 61 cases. 

 

Breast Lesion Detection and Classification 

Breast cancer is the most frequent cancer among women and also the leading cause of cancer-related 

deaths among women [38]. The BI-RADS [39] score is used to standardize reporting and reduce confusion in 

breast imaging interpretations. However, significant intra- and interobserver variability on the basis of BI-RADS 

scoring has been reported in several studies [40,41]. CAD systems with high sensitivity and negative predictive 

value can be used to provide radiologists a second opinion in a cost-effective way and can help reduce 

unnecessary false-positive biopsies. To date, several DL approaches have been explored for objective and 

reproducible classification of breast lesions from ultrasound images. Byra et al [42] presented a CNN model 

based on transfer learning to classify breast lesions as benign or malignant. They used the VGG19 
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[43] CNN model pretrained on the ImageNet data set and fine-tuned it on 882 ultrasound images of breast 

masses. Han et al [44] trained a GoogleNet [36] model on 7,408 breast ultrasound images and tested on 829 

images. This model is a component algorithm of S-Detect technology, which is implemented in RS80A 

(Samsung Medison). Cheng et al [15] used a stacked denoising autoencoder model [2] to classify breast lesions. 

Zhang et al [45] used a two-layer DL model that includes a fully connected neural network as the first layer to 

extract features and a restricted Boltzmann machine as the second layer to provide better feature representation. 

A support vector machine (SVM) classifier was connected to the restricted Boltzmann machine to predict breast 

lesions. Several other studies also used DL to detect breast lesions from ultrasound images [46,47]. 

 

Liver Lesion Classification 

Ultrasound is the preferred imaging modality to evaluate liver diseases because it provides information 

about the appearance of the liver and portal venous blood flow. Although liver biopsy is sensitive in assessing 

cirrhosis, it is invasive and limited by sampling errors, interobserver variability, and various potential 

complications such as damage to the lung and gallbladder, bleeding, and infec-tion. Wang et al [49] presented a 

multicenter study to assess liver fibrosis stage with DL from ultrasound SWE images. They concluded that DL-

based elastography is more accurate than 2-D SWE imaging in assessing cirrhosis and advanced fibrosis and 

more accurate than biomarkers in assessing all three liver fibrosis stages in patients with chronic hepatitis B. 

Meng et al [50] used a fine-tuned VGGNet [43] and fully connected network based on transfer learning to 

predict the stage of liver fibrosis. Similarly, Liu et al [51] presented a pretrained CNN model that extracts 

features of liver capsule from ultrasound images and uses an SVM to classify a liver as normal or abnormal 

from extracted CNN features. Wu et al [52] trained a deep-belief network model [3] on time-intensity curves 

extracted from contrast-enhanced ultrasound for the classification of focal liver lesions. They showed that their 

method outperforms classical ML methods. Biswas et al [53] assessed fatty liver disease from ultrasound images 

using DL and achieved a performance superior to that of ML approaches. 

 

Other Applications 

In addition to three main applications of DL in ultra-sound, several other AI applications in ultrasound 

have been explored by researchers in the field. Yu et al [55] used a customized CNN that contains 16 

convolutional layers with 3 3 kernels and three fully connected layers to classify the fetal ultrasound plane. Wu 

et al [56] assessed the quality of fetal ultrasound images using two cascaded CNN models for accurate 

measurements. The first CNN (pretrained AlexNet) finds the region of interest of the abdominal region from 

ultrasound images. The second CNN that receives the region of interest from the first CNN as input evaluates 

the image quality by assessing the key structures of stomach bubble and umbilical vein. Chen et al [57] also 

used a composite CNN framework that includes a CNN model for in-plane feature extraction and long short-

term memory model to classify fetal standard planes. Menchón-Lara et al 

 

[58] used an autoencoder [2] to segment intima-media thickness in a user-independent and reproducible 

manner. Lekadir et al [59] used a CNN that includes four convolutional and three fully connected layers to 

classify atherosclerotic plaque components including lipid core, fibrous tissue, and calcified tissue. Hetherington 

et al 

[60] presented a spine-level vertebra identification system using pretrained CNN models. Cheng and Malhi 

[61] used the VGG model [43] to classify the anatomic location and plane of abdominal ultrasound images. DL 

has been also used for ultrasound beamforming [62,63], image recovery [64], image reconstruction from 

subsampled RF data [65], and elastographic image reconstruction [66]. 

 

III. RESULTS 
Thyroid Nodule Detection and Classification 

Ma et al [29] validated their CNN model on 15,000 images collected from two local hospitals and 

achieved accuracy of 83.02 0.72% for classifying benign and malignant nodules. However, their receiver 

operating characteristic (ROC) curve indicated that their model always missed some malignant cases and never 

reached 100% sensitivity. Ma et al [30] evaluated their nodule detection model with 10-fold cross-validation and 

achieved an average area under the ROC curve (AUC) of 98.51%. The CNN model of Li et al [31] for detecting 

papillary carcinoma and benign regions of nodules from ultrasound B-mode images obtained 93.5% sensitivity 

and 81.5% specificity. Li et al [33] concluded on the basis of a retrospective and multicohort study with a large 

population from three hospitals (a total of 332,180 images from 45,644 patients) that the CNN model showed 

similar sensitivity and improved specificity in identifying patients with thyroid cancer compared with a group of 

skilled radiologists. The performance of the CNN model by Akkus et al [16] on a test set of 100 transverse and 

longitudinal images of 50 nodules was 86% (sensitivity) and 90% (specificity). When the threshold was set for 

maximum sensitivity (zero missed cancers), their ROC curve suggests that the number of biopsies may be 
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reduced by 52% without missing patients with malignant thyroid nodules. Choi et al [22] concluded on the basis 

of 102 nodules from 89 patients that the sensitivity of the CAD system using AI for malignant thyroid nodules 

was as good as that of the experienced radiologist. Pereira et al [37] obtained the highest accuracy of 83% on 

20% of a data set of 964 images from 165 patients. Chi et al [17] achieved 98.29% accuracy on a test data set of 

61 cases for classification of thyroid nodules with a fine-tuned GoogleNet model [36]. Characteristics of each 

model are summarized in Table 1. 

 

Breast Lesion Detection and Classification 

Byra et al [42] achieved an AUC of 93.6% over a test data set of 150 cases for classifications of breast 

lesions into benign or malignant lesions and concluded that the model has potential to assist radiologists with 

breast mass classification in ultrasound. Han et al [44] achieved accuracy of 90%, sensitivity of 86%, and 

specificity of 96% on the test data set (n ¼ 829 images). Cheng et al [15] achieved an AUC of 89.6% for 

classification of breast lesions, which outperforms conventional ML-based methods. Zhang et al [45] achieved 

better performance with their two-layer DL model when classifying breast lesions from SWE images (accuracy 

93.4% versus 84%-87%). Characteristics of each model are summarized in Table 2. 

 

Liver Lesion Classification 

Several studies used DL to diagnose liver diseases from ultrasound images (see Table 3 for a 

summary). Wang et al [49] concluded that DL-based elastography is more accurate than 2-D SWE imaging in 

assessing cirrhosis and advanced fibrosis and more accurate than biomarkers in assessing all three liver fibrosis 

stages in patients with chronic hepatitis B. The AUCs of the proposed method were 97% for F4 (cirrhosis), 98% 

for F3 or higher (advanced fibrosis), and 85% for F2 or higher (significant fibrosis). Meng et al [50] achieved 

accuracy of 93.90% on 30% of their data set (n ¼ 279 cases: 79 normal, 89 early-stage fibrosis, 111 late-stage 

fibrosis) for predicting the stage of liver fibrosis. The AUC of the method proposed by Liu et al [51] for 

classifying a liver as normal or abnormal reached 96.8%, which is superior to the accuracy of low-level features. 

Wu et al [52] showed that their method outperforms 

 

Table 1. Model characteristics for thyroid nodule detection and classification 

 

 Total Number 

Test Set 

Number     

  of Images of Images     

  (Number of (Number of   Performance  

 Study Patients) Patients) Task Method Metrics  

 

Ma et al 

(2017) [29] 15,000 (4,782) 10-fold Classification Two fused Accuracy: 83.02%  

   

cross-

validation  CNN models TPR: 82.41%  

      TNR: 84.96%  

      AUC: 89.30%  

 

Ma et al 

(2017) [30] 21,523 (5,842) 10-fold Detection Two cascaded AUC: 98.51%  

   

cross-

validation  CNN models   

        

 

Li et al 

(2018) [31] 4,670 (300) 1,027 (100) Detection Faster R-CNN [32] TPR: 93.5%  

      TNR: 81.5%  

      AUC: 93.8%  

 

Li et al 

(2018) [33] 332,180 (45,644) 19,781 (2,692) Classification Resnet50 [34] Accuracy: 88.9%  

     and Darknet-19 TPR: 92.2%  

     [35] TNR: 87.1%  

      AUC: 94.7%  

        

 Akkus et al 300 (300) 100 (50) Classification Inception [36] TPR: 86%  

 (2019) [16]     TNR: 90%  

 Choi et al 102 (89) 102 (89) Classification Proprietary Accuracy: 81.4%  

 (2017) [22]     TPR: 90.7%  
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      TNR: 74.6%  

      AUC: 83%  

        

 Pereira et al 964 (165) 193 (33) Classification CNN based Accuracy: 83%  

 (2018) [37]    on AlexNet [4] TPR: 95%  

      TNR: 40%  

      AUC: 80%  

 

Chi et al 

(2017) [17] 428 þ 208 (NA) 549 (61) Classification GoogleNet [36] Accuracy: 98%  

      TPR: 99%  

      TNR: 94%  

        

 

Note: AUC ¼ area under receiver operating characteristic curve; CNN ¼ convolutional neural network; NA ¼ 

not available; TNR ¼ true negative rate (specificity); TPR ¼ true positive rate (sensitivity). 

 

Table 2. Model characteristics for breast lesion detection and classification 

 

 Total Number of 

Test Set 

Number of     

  

Images (Number 

of 

Images 

(Number of   Performance  

 Study Patients) Patients) Task Method Metrics  

        

 Byra et al 882 (NA) 150 (150) Classification CNN based on Accuracy: 88.7%  

 (2018) [42]    VGG19 [43] TPR: 84.8%  

      TNR: 89.7%  

      AUC: 93.6%  

 Han et al 7,408 (5,151) 829 (NA) Classification CNN based on Accuracy: 91.23%  

 (2017) [44]    GoogLeNet [36] TPR: 84.29%  

      TNR: 96.07%  

      AUC: 96.01%  

        

 Cheng et al 520 (520) 

10-fold cross-

validation Classification Stacked denoising Accuracy: 82.4%  

 (2016) [15]    autoencoder [2] TPR: 78.7%  

      TNR: 85.7%  

      AUC: 89.6%  

 Zhang et al 227 (121) 

5-fold cross-

validation Classification Proprietary Accuracy: 93.4%  

 (2016) [45]     TPR: 88.6%  

      TNR: 97.1%  

        

 Yap et al 306 þ 163 (NA) 

10-fold cross-

validation Detection FCN-AlexNet [4] TPF: 98%þ92%  

 (2018) [46]       

 Kumar et al 433 (258) 61 (NA) Segmentation U-Net [48] Dice: 82%  

 (2018) [47]     TPF: 84%  

        

 

 

Note: AUC ¼ area under receiver operating characteristic curve; CNN ¼ convolutional neural network; NA ¼ 

not available; TNR ¼ true negative rate (specificity); TPF ¼ true positive fraction; TPR: true positive rate 

(sensitivity). 

classical ML methods (accuracy 86.36% versus 66.67%-81.86%). Biswas et al [53] achieved 

performance superior to that of ML approaches (accuracy 82% [SVM] versus 92% [extreme learning machine 

(ELM)] versus 100% [DL]) in the assessment of fatty liver disease from ultrasound images using DL. According 

to the studies presented here, DL can significantly improve the diagnosis of liver diseases and could potentially 

reduce unnecessary liver biopsies and related health care costs. 
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Table 3. Model characteristics for liver lesion classification 

 

 Total Number of 

Test Set 

Number     

  Images (Number 

of Images 

(Number     

 Study of Patients) of Patients) Task Method Performance Metrics  

 Wang et al 1,990 (398) 

One-third of 

total Classification CNN on radiomic TPR: 69.1%-96.9%  

 (2018) [49]     features TNR: 88.0%-98.3%  

      from SWE AUC: 85%-98%  

 Meng et al 1,674 (279) 30% of total Classification CNN based on Accuracy: 93.90%  

 (2017) [50]     VGGNet [43]   

         

 Liu et al 91 (91) 

3-fold cross-

validation Classification CNN þ SVM Accuracy: 89.2%  

 (2017) [51]     classification AUC: 96.8%  

 Wu et al [52] 22 (26) 

10-fold cross-

validation Classification Restricted Accuracy: 86.36%  

      Boltzmann TPR: 83.33%  

      machine TNR: 87.50%  

         

 Byra et al [54] 55 (55) Leave-one-out Classification ResNet [34] AUC: 97.7%  

    cross-validation     

 Biswas et al 63 (63) 

10-fold cross-

validation Classification Inception [36] Accuracy: 99%  

 2018 [53]        

         

 

Note: AUC ¼ area under receiver operating characteristic curve; CNN ¼ convolutional neural network; SVM 

¼support vector machine; TNR ¼ true negative rate (specificity); TPR ¼ true positive rate (sensitivity). 

 

Other Applications 

The method proposed by Yu et al [55] for classification of fetal ultrasound plane obtained accuracy of 

93.03%, which is superior to that of traditional ML methods. Wu et al [56] compared their CNN model with the 

subjective image quality assessment of three physicians and concluded that the performance of their model is 

comparable with the physicians’ ratings. The T-RNN model of Chen et al [57] achieved an AUC of 0.95 for 

detecting fetal standard plane from ultrasound videos. Menchón-Lara et al [58] obtained intima-media thickness 

measurements using a radial basis function network with acceptable errors compared with manual 

measurements. Lekadir et al [59] presented Pearson correlation coefficients of 0.92, 0.87, and 0.93 for lipid 

core, fibrous tissue, and calcified tissue, respectively, between areas calculated by an expert clinician and the 

proposed CNN model. The experiment indicates that the classification accuracy of CNNs is much better than 

that of SVMs. Hetherington et al [60] concluded that their model could accurately detect the vertebral level so 

that the anesthesiologist can find the right site to inject anesthetic. The trained VGGNet [43] of Cheng and 

Malhi [61] classified 77.9% of abdominal ultrasound images correctly on the test data set (1,109 of 1,423 

images), which is comparable with a radiologist’s performance (71.7%). 

 

IV. DISCUSSION AND OUTLOOK 
Although DL methods for ultrasound provide promising results, AI-powered ultrasound is still far behind the 

progress in AI-powered CT and MRI because of high intra- and inter-reader variability in ultrasound image 

acquisition and interpretation. 

Most of the DL applications in ultrasound were trained and evaluated on limited, single data sets 

obtained from a single medical center and a single ultrasound device. To overcome this limitation, transfer 

learning and fine-tuning a DL model previously trained on optical or natural-world images as previously 

proposed [42,50,61] can be applied. However, it would be more appropriate to apply transfer learning on a DL 

model trained natively on ultrasound images and fine-tune the model on a new data set obtained from a different 

medical center and/or a different ultrasound device. Another approach to overcome the limitation of having a 

limited data set is to use data augmentation (eg, tissue deformation, translations, horizontal flipping, adding 

noise, and enhancing images) to improve the generalization ability of DL models. However, data augmentation 
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parameters should be chosen cautiously to realistically mimic variations in ultrasound images. For example, 

vertically flipping ultrasound im-ages will not be a realistic transformation, because shadowing never appears in 

the opposite direction of the ultrasound beam. 

 To build trust in an AI system designed for disease prediction from medical images, we must build 

trans-parent models that explain how and what they predict. Understanding the inner workings of a CNN 

requires interpreting the feature activity in each layer [67-69]. However, these activities become complex and 

abstract in deep CNN layers, and therefore it is more difficult to interpret them but usually results in more robust 

and generalizable features. By using DL models, we sacrifice interpretability for robustness and complex 

imaging features with greater generalization ability. The convolutional properties of CNN layers have been 

projected back to the input pixel space, showing what input pattern originally resulted in an activation in the 

feature maps. This explains which regions of the image play an important role in maximizing the classification 

accuracy. Several techniques have been used to investigate what DL sees and make CNN understandable, 

including deconvolutional networks [70], gradient back-propagation [71], class activation maps [72], gradient-

weighted class activation maps [73], and saliency maps [74,75] for multiple CNN architectures [43,48,76-78]. 

This is an active area of research in the DL community. 

Current DL models for ultrasound diagnosis use only 2-D cross-sectional images for making 

predictions. However, the information in 2-D cross-sections is limited and does not represent lesions 

completely. DL models trained on 3-D ultrasound data, ultrasound cine clips with multiple views of lesions, or 

spatiotemporal data could potentially improve the diagnostic accuracy of models and consider complete lesions. 

Furthermore, developing DL models that are trained on multimodal (B-mode, Doppler, contrast-enhanced 

ultrasound, and SWE) images, which provide complementary informa-tion to one another, could also improve 

the diagnostic accuracy of DL models. 

In summary, AI-powered ultrasound systems that evaluate multimodal data, guide sonographers, and 

pro-vide objective qualifications (eg, standard view of an or-gan and acceptable image quality), measurements, 

and diagnosis will not only assist with decision making but also improve ultrasound clinical workflow and 

reduce health care costs. 

 

AKE-HOME POINTS 

- DL models that are trained on multimodal (B-mode, Doppler, contrast-enhanced ultrasound, and SWE) 

images, which provide complementary information to one another, could also improve the diagnostic accuracy 

of DL models. 

- To build trust in an AI system designed for disease prediction from medical images, we must build 

transparent models that explain how and what they predict. 

- The generalization ability of DL-based diagnosis approaches have been proved to be superior than 

traditional ML approaches. 

- DL models trained on 3-D ultrasound data, ultra-sound cine clips with multiple views of lesions, or 

spatiotemporal data could potentially improve the diagnostic accuracy of models and consider complete lesions. 

- Providing guidance to operators with AI during data acquisition and measurement would make ultra-sound 

more intelligent and less operator dependent. 
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